UNPROVABLE SECURITY

of Leakage Resilient Cryptography beyond the Information-theoretic Limit

Rafael Pass
Cornell Tech
Leakage-Resilient Cryptography

- Study of cryptography in the presence of leakage [ISW03,MR04]
- Our focus is on the bounded-leakage model [Maurer94,AGV09]
 - the attacker gets some arbitrary poly-time leakage on the secret of some bounded size $l(n) << n$
- Consider the simplest task: $l(n)$-leakage resilient OWF

\[
\begin{align*}
C & \quad f(x) \quad q_1 \\
& \quad q_1(x) \\
& \quad \vdots \\
& \quad q_k(x) \\
& \quad x' \\
A & \quad \text{WINS if:} \\
& \quad (1) f(x') = f(x) \\
& \quad (2) |q_1(x)|+..+|q_k(x)| < l(|x|) \\
& \quad \text{i.e., inverts using} \\
& \quad l\text{-bounded leakage}
\end{align*}
\]
Leakage-Resilient OWF

Trivial leakage resilience:
- Any OWF/OWP is a $O(\log n)$-leakage resilient
- Any subexp-secure OWF/OWP is $O(n^\epsilon)$-leakage resilient for some $\epsilon > 0$

Thm [KV’09,ADW’09]: Any CRH h is a $n/2$-leakage resilient OWF

Proof idea:
- Given $h(x)$, and leak(x), x still has lots of entropy left.
- If you can find find a pre-image, its unlikely to be x.
- So any attacker that succeeds in inverting h given the leakage, can be used to find collision in h.
Leakage-Resilient OWF

Trivial leakage resilience:
- Any OWF/OWP is a $O(\log n)$-leakage resilient.
- Any subexp-secure OWF/OWP is $O(n^\epsilon)$-leakage resilient for some $\epsilon > 0$.

Thm [KV’09,ADW’09]: Any CRH h is a $n/2$-leakage resilient OWF.

Key point: secret needs to have (actual) entropy left after leakage.
This principle is used in all proofs for “non-trivial” leakage resilience.

Focus of this paper: Can we go beyond this “information-theoretic” barrier?
(can we prove leakage-resilience also of “computationally hidden” secrets)
Open Questions

1. Can we base $O(n^\varepsilon)$-leakage resilient OWF on polynomial hardness assumption?

2. Can we base $O(n^\varepsilon)$-leakage resilient OWF with $<< 2^{n^\varepsilon}$ pre-images on polynomial hardness assumption?
Main Result

Answer is **NO** with respect to any **black-box security reductions** from **O(1)-round intractability assumptions**.

Any security reduction R **itself** must constitute an attack on the intractability assumption.
Intractability Assumptions

Following [Naor’03,DOP’05,HH’09,..GW’11,P’11], we model an intractability assumption as an interaction between a Challenger C and an attacker A.

\[N = pq \]

Intractability assumption (C,t) :
“no PPT can make C output 1 w.p significantly above t”

Bounded-round assumption [P’11]: C communicates in \(r(n) \)-round
• 2-round: Factoring, f is a OWF, G is a PRG, DDH, …
• O(1)-round: Enc is semantically secure, (P,V) is WH,
• \(l(n) \)-round: \(f \) is \(l \)-leakage-resilient OWF
Black-box Reductions

$C \overset{N = pq}{\longrightarrow} R^A$

R^A breaks C whenever A breaks security of scheme

Reduction R may rewind and restart A.
Main Theorem

• Assume the existence of CRH.
• Let f be a function with 2^{n^ε}-bounded pre-image set sizes.
• Let (C,t) be a $O(1)$-round intractability assumption

If there exists a PPT black-box reduction R for basing $O(n^\varepsilon)$-leakage resilient one-wayness of f on the hardness of (C,t), then there exists a PPT attacker B that breaks (C,t)

Remark:
Our main theorem applies also to leakage-resilience of NP-search problems
[Wichs’13] shows a very related black-box impossibility results for OWP:
 – But his result considers only restricted classes of reduction, which treat the leakage query as a black-box
 – Non-black-box usage of leakage queries have proven useful in the related context of KDM-security [BHH10, MPS’16]

[Aggarwal-Maurer’11] also study l-leakage-resilience of NP search problems.
 – Do no present lower-bounds;
 – But relate this problem to other computational problems (e.g., optimal algorithms without leakage)

Large body of work on “meta-reductions” [BV’99]
Meta-reductions [BV’99,(Bra’79)]

1. Design a particular attacker A that breaks n^ε-leakage resilience
2. Show how to emulate attacker in poly-time.

Today:
- Restrict attention to OWP
Consider attacker A, that given $y = f(x)$:

- ask to hear a **succinct argument of knowledge** of the statement “exists x s.t. $f(x) = y$” (exists based on CRH)
- If the argument is accepting, it recovers any x s.t. $f(x) = y$, and returns it.
Consider attacker A, that given $y = f(x)$:

• ask to hear a **succinct argument of knowledge** of the statement “exists x s.t. $f(x) = y$” (exists based on CRH)

• If the argument is accepting, it recovers any x s.t. $f(x) = y$, and returns it.

Remarks:

• Similar method used in [NVZ’14,OPV15] in the context of leakage-resilient ZK and secure computation.
Consider attacker A, that given y:
- ask to hear a **succinct argument of knowledge** of the statement “exists x s.t. f(x) = y” (exists based on CRH)
- If the argument is accepting, it recovers any x s.t. f(x) = y, and returns it.

Emulate A:
- **Rewind the AOK** to extract out some x’ s.t. f(x’) = y
- Return x’

Since f is a OWP, x’ must be equal to x returned by A
(fails f is a general OWF, or even if there are more than 1 pre-image)
General Reductions: Problem

Problem: R might nest its oracle calls. “naïve extraction” requires exponential time (c.f., Concurrent ZK [DNS’99])

Solution: Rely on techniques developed in [P11]

1. use a special form of AOK (“special-soundness”); will no longer be succinct, but will still have a **laconic prover**
2. require R to provide many, $O(n^\epsilon)$, sequential proofs, then we can find (recursively) find one proof where nesting depth is “small”.

rewinding here: redo work of nested sessions
Theorem

• Assume the existence of CRH.
• Let f be a OW
• Let (C,t) be a $O(1)$-round intractability assumption

If there exists a PPT black-box reduction R for basing $O(n^\epsilon)$-leakage resilient one-wayness of f on the hardness of (C,t), then there exists a PPT attacker B that breaks (C,t)

Additional ideas need to extend to OWF with bounded number of pre-images
Main Theorem

- Assume the existence of CRH.
- Let f be a function with 2^{n^ε}-bounded pre-image set sizes.
- Let (C, t) be a $O(1)$-round intractability assumption

If there exists a PPT black-box reduction R for basing $O(n^\varepsilon)$-leakage resilient one-wayness of f on the hardness of (C, t), then there exists a PPT attacker B that breaks (C, t)
Thank You